Environmental Economics and Policy: Memo 8

1. Cost Benefit Analysis in Environmental Policy

Market failure, public goods, nonexcludable and nonrivalrous, jointness in supply Policy (program and project) evaluation criteria and policy selection criteria

$$\begin{split} B/C &= \Sigma \quad \left(Bn \, / \, (1+r)^{n\text{-}1}\right) \ \ / \ \ \, \sum \quad \left(Cn \, / \, (1+r)^{n\text{-}1}\right) \\ NPV &= \ \ \Sigma \quad \left(Bn \, / \, (1+r)^{n\text{-}1}\right) \ \ \, - \ \ \, \sum \quad \left(Cn \, / \, (1+r)^{n\text{-}1}\right) \end{split}$$

Net benefit criterion: Kaldor-Hicks criterion: Those who will gain could fully compensate those who will lose.

Efficiency: Pareto Optimum or Pareto Efficiency

"An allocation of goods is Pareto efficient if no alternative allocation can make at least one person better off without making anyone else worse off."

Ex ante CBA and ex post CBA Social Cost vs. Social Benefit

Social Benefit: WTP: willingness to pay (vs. WTA)

Social Cost: Opportunity cost: The opportunity cost of using an input to implement a policy is its value in its best alternative use.

Social characteristics of CBA: Supporting technology for policy (selection) decision making from a viewpoint of efficient social resource allocation

Lifetime: Benefit stream and Cost stream

SDR: Social Discount Ration: Social time preference and Marginal return of capital

5 main steps:

- ①List of alternatives (counterfactual)
- ②Items of cost and items of benefit (Time framework and Impact)
- 3 Technical measurements of cost items and benefit items
- 4 Monetary assessments of technical cost and benefit items
- (5) Comparison CB ratio (B/C) or NPB (Net Present Benefit)

2. Cost benefit analysis of the sulfur dioxide emissions control policy in Japan

Benefit =
$$\sum_{t=0}^{e} BMt / (1+r)^{t} + \sum_{t=0}^{l} BLt / (1+r)^{t}$$
 (1)

BM t : social medical expense e : remaining lifetime r : SDR

BL t : social labor loss 1 : remaining working life-years

$$Cost = \sum_{t=0}^{e} Ct/(1+r)^{t}$$
 (2)

 $\left[\begin{array}{cccc} C\ t\ : social\ cost & e: remaining\ lifetime\ r\ : SDR \end{array}\right]$

SDR=0% (Unit: 1 billion yen, 1993 price)

		1968~1973	1974~1983	1984~1993
Cost		9215	27233	16248
Benefit	Medical Expense	20759	12687	2639
	Labor loss	2071	1742	343
	COI Total	22830	14428	2982
	WTP	45660	28856	5964
B/C		4.96	1.06	0.37

SDR = 2.5%

		1968~1973	1974~1983	1984~1993
Cost		5576	15991	9354
Benefit	Medical Expense	13626	8228	1695
	Labor loss	1404	1181	233
	COI Total	15029	9409	1927
	WTP	30058	18818	3854
B/C		5.39	1.18	0.41

SDR = 9%

2210 370					
		1968~1973	1974~1983	1984~1993	
Cost		2387	6632	3811	
Benefit	Medical Expense	6809	4078	829	
	Labor loss	682	573	133	
	COI Total	7490	4652	942	
	WTP	14980	9304	1884	
B/C		6.29	1.40	0.49	

Source: Kochi, I., S. Matsuoka, M. A. Memon, and H. Shirakawa (2001), "Cost benefit analysis of the sulfur dioxide emissions control policy in Japan", *Environmental Economics and Policy Studies*, 4(4), pp.219-233

References

- *Kochi, I., S. Matsuoka, M. A. Memon, and H. Shirakawa (2001), "Cost benefit analysis of the sulfur dioxide emissions control policy in Japan", *Environmental Economics and Policy Studies*, 4(4), pp.219-233
- *Boardman, A.E., D. H. Greenberg, A. R. Vining, and D. L. Weimer (2006), *Cost-Benefit Analysis: Concept and Practice (3rd ed.)*, Person Prentice Hall.

Schedule

1. Introduction 9/26

Part I: Theory of Environmental Economics and Environmental Policies

- 2-6. CAC and MBIs and the comparison of their efficiency 10/6, 10/13, 10/27, 11/10, 11/17
- 7. Voluntary Approaches, Water Pollution Policy, Climate Change Policy 11/17, 11/24

Part II: Economic Evaluation on Environmental policy and Policy Analysis

- 8.9. Cost Benefit analysis in Environmental Policy 12/1, 12/8
- 10.11. Economic Valuation on Environmental Policy-COI, SP and RP 12/15, 12/22
- 12.13. Contingent Valuation Method (CVM) and Travel Cost Method 1/12, 1/19 (close)
- 14. The Design of Environmental Policy 1/26
- 15. Concluding remarks 2/2 (supplements)