持続可能な発展と国際開発協力(4)

1. 様々な持続性の定義

(1) Sustainability Science; 2000 Friibergh Workshop on Sustainability Science

(Friibergh, Sweden, October 11-12, 2000)

Core 7 Questions of Sustainability Science

- 1. How can the dynamic interactions between nature and society --including lags and inertia--be better incorporated into emerging models and conceptualizations that integrate the Earth system, human development, and sustainability?
- 2. How are long-term trends in environment and development, including consumption and population, reshaping nature--society interactions in ways relevant to sustainability?
- 3. What determines the vulnerability or resilience of the nature-society system in particular kinds of places and for particular types of ecosystems and human livelihoods?
- 4. Can scientifically meaningful "limits" or "boundaries" be defined that would provide effective warning of conditions beyond which the nature-society systems incur a significantly increased risk of serious degradation?
- 5. What systems of incentive structures -- including markets, rules, norms, and scientific information -- can most effectively improve social capacity to guide interactions between nature and society toward more sustainable trajectories?
- 6. How can today's operational systems for monitoring and reporting on environmental and social conditions be integrated or extended to provide more useful guidance for efforts to navigate a transition toward sustainability?
- 7. How can today's relatively independent activities of research planning, monitoring, assessment, and decision support be better integrated into systems for adaptive management and societal learning?

(2) 持続性へのアプローチ

Question→Idea (アイディア) → Concept (概念定義・指標) → Model (理論・モデル)

(3) 社会科学(主として経済学)における持続性概念

①Steady State Economics, Stationary Economy, Entropy (Ecological) Economics ローマクラブ『成長の限界(The Limits to Growth)』1972

②有力な持続性のルーツとしての**環境容量(Ecological/ carrying capacity)**:

余剰生産量モデル:最大持続収穫量 MSY(MAC)、最大持続経済的収穫量 MEY

生物資源の成長曲線:時間(t)と資源量(ストック:X)との関係

資源量(X)と成長量(dx/dt)

収穫努力量(E)と収穫量(H=dx/dt)→MSY

総収入 TR は収穫量(H)とその単位価格(P)により、TR=PH

総費用 TC は収穫努力量(E)とその単位費用(W)により、TC=WE

TRとTCからMEY

③開発(貧困・格差)研究:ブルントラント委員会のSD

Eco-developmen:前回資(4/21)参照

④新古典派(技術至上主義)

Economics: VWS, WS, SS, VSS: *前々回資料(4/14)参照

VWS: ④ WS, SS: ②、③

VSS: ①

2. SD 指標

前回資料 (4/21) 参照: SD の指標化→SD の基本要素は何か? 定義と独立変数環境・経済・経済・制度

DPSIR (OECD)

(出所) LEAD (Livestock, Environment and Development) Initiative. (1999) より筆者修正 図 1. DPSIRフレームワーク

3. 講義日程

- 第1部 持続可能な発展(SD)の概念と理論
 - 1. ガイダンス:持続可能な発展とは? 4/07
 - 2. 開発と環境:環境クズネッツ曲線 4/14
 - 3-4. 持続可能な発展の指標 4/21、4/28
- 第2部 途上国の開発政策と持続可能な発展
 - 5. 途上国の貧困と開発 5/12
 - 6. 途上国の開発政策 5/19
 - 7. 途上国の開発と環境 5/26
- 第3部 国際開発援助と持続可能な発展
 - 8. 国際開発援助の歴史と制度 6/02
 - 9-10. 開発援助政策の理論と評価 6/09、6/16
 - 11-12. 開発援助と地球環境問題 6/23、6/30
- 第4部 新たな開発戦略
 - 13-14. グローバル・サステイナビリティと国際開発協力 7/07、7/14
 - 15. まとめと試験 7/21